BRIEF REPORT OF MINOR RESEARCH PROJECT

TOPIC

LATTICE TRANSLATIONS AND MOTIONS

:: Submitted to :: The Joint Secretary University Grants Commission Western Regional Office Ganeshkhind, Pune

> -- By --Prof. J. G. Chavan

DEPARTMENT OF MATHEMATICS

RASHTRIYA ARTS, SCIENCE AND COMMERCE COLLEGE, (NANASAHEB Y.N. CHAVAN A.S.C. COLLEGE) CHALISGAON, DIST. JALGAON (MARASHTRA STATE) INDIA

1. BRIEF REPORT

In this we prove that order of an ℓ - subgroup of a finite ℓ - group divies it'r order. Consequently we obtained that order of a convex sublattice which is I \cap D divides the order of a finite lattice, where I denotes ideal and D the dual ideal. We start with dilation, translation and double dialational and state their properties.

The ℓ - group is a system which is a group and at the same time a lattice. The ℓ dilation is defined on ℓ - group G as the function $(d_a)(x) = a \land x$ and translation is defined by $(t_a)(x) = x \vee x$.

Then
$$d_a V d_b = d_{a \vee b}$$
; $d_a \wedge d_b = d_{a \wedge b}$
and $t_a V t_b = t_{a \vee b}$; $t_a \wedge t_b = t_{a \wedge b}$

The joint action of translation and dilation is constant. These facts are discussed in section 2. In the same section we prove that every ℓ -group (G, \Box ,V \land) is distributive lattic. It is also proved that dilation maps translations into translations and a transplation maps dilations into dilations. Arthur Knoebel in [7] defined a 2 - place function $f_h: B^2 \rightarrow B$ as $f_h(x_1, x_2) = (b \land x) \vee (b \land x_2)$

Section 2 include the basic material which is required in sections -3 and 4

In any ℓ - group G

- (i) $(t_a \Box d_{a^{\wedge}} b \Box t_b) = a$
- (ii) $(t_a \Box t_{a^h} \Box d_b) = a$
- (iii) $(t_a \Box t_{avb} \Box t_b) (C) = a v b$
- (iv) $(d_a \Box t_{a^h} \Box d_b) = a^h$

By combining dilation and translation we have obtained that

$$(t_{a^{h}b} \Box d_{avb}) (c) = (a \land b) v (a \land c) v (b \land c)$$

Which is called median ternary operation.

In secon 2 dilational and double dilational hulls are introduced in an ℓ - group G. For median algebra and conves hull one can refer [2] and [3]. In [8] we find some good results on convex ℓ - subgroups of an ℓ - group. Out of these the basic results are Lemma 3.2 and Theorem 3.1 in which proved that every convex ℓ - subgroup of an ℓ - group is an ℓ - ideal. In theorem 3.1 it is proved that every convex ℓ - subgroup of an ℓ - group is the set theoratical intersection of an ℓ - ideal and of dual ℓ - ideal.

These two results serve our machinery in section 4 to prove that the order of an convex ℓ - subgroup divides the order of finite ℓ - group and also the order of convex sublattice divides the order of a finite lattice. In the same section 3, we prove that every ℓ - group is isomorphic to dilational hull. Moreover if G is an ℓ - group then G² is ismorphic to double dilational hull **XX** (G). The proof is very lengthy and hence it is divided into three parts, each part being a separate Lemma.

Section 4 points out the investigation on ℓ - ideals. For results on ideals of semilattices one can refer [9]. This section also include ℓ - congruences. There are very interesting results. For congruences and congruence lattices with a very good literature one can consult, General lattics Theory by G. Gratzer [6], pages 76, 161, 196 etc. Using ℓ - ideals and ℓ - congruences we have very successfully solved the problem of dividing the order of an ℓ - group by the order of it's ℓ - subgroup and further more dividing the order of a finite lattice by it's convex sublattice. The tool is discussed previously i sthe set intersection I \cap D of ℓ - ideal and dual ℓ - ideal for ℓ - groups and ideal; dual ideal for lattices. We denote, (L,V, \wedge) as a lattice and (G, \Box ,V \wedge) as an ℓ - group whenever the terminology appear in the paper.